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Conventional transport theory focuses on either the diffusive or ballistic regimes and neglects the crossover
region between the two. In the presence of spin-orbit coupling, the transport equations are known only in the
diffusive regime, where the spin precession angle is small. In this paper, we develop a semiclassical theory of
transport valid throughout the diffusive-ballistic crossover of a special SU�2� symmetric spin-orbit-coupled
system. The theory is also valid in the physically interesting regime where the spin precession angle is large.
We obtain exact expressions for the density and spin structure factors in both two-dimensional and three-
dimensional samples with spin-orbit coupling.
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The physics of systems with spin-orbit coupling has gen-
erated great interest from both academic and practical
perspectives.1 Spin-orbit coupling allows for purely electric
manipulation of the electron spin2–6 and could be of practical
use in areas from spintronics to quantum computing. Theo-
retically, spin-orbit coupling is essential to the proposal of
interesting effects and new phases of matter such as the in-
trinsic and quantum spin Hall effect.7–12

While the diffusive transport theory for a system with
spin-orbit coupling has recently been derived,13,14 the analy-
sis of diffusive-ballistic transport, where the spin precession
angle during a mean-free path is comparable to �or larger
than� 2�, has so far remained confined to numerical
methods.15 This situation is experimentally relevant since the
momentum relaxation time � in high-mobility GaAs or other
semiconductors can be made large enough to render the pre-
cession angle �=�kF��2�, where � and kF are the spin-
orbit coupling strength and Fermi momentum, respectively.
The mathematical difficulty in obtaining the crossover trans-
port physics rests in the fact that one has to sum an infinite
series of diagrams which, due to the spin-orbit coupling, are
not diagonal in spin space. In this paper we obtain the ex-
plicit transport equations for a the series of models with spin-
orbit coupling where a special SU�2� symmetry has recently
been discovered.16

We first consider a two-dimensional electron gas without
inversion symmetry for which the most general form of lin-
ear spin-orbit coupling includes both Rashba and Dressel-
haus contributions,

H =
k2

2m
+ ��ky�x − kx�y� + ��kx�x − ky�y� , �1�

where kx,y is the electron momentum along the �100� and
�010� directions, respectively, � and � are the strengths of
the Rashba and Dresselhauss spin-orbit couplings, and m is
the effective electron mass. At the point �=�, which may be
experimentally accessible through tuning of the Rashba cou-
pling via externally applied electric fields,2 a new SU�2� fi-

nite wave-vector symmetry was theoretically discovered.16

The Dresselhauss �110� model, describing quantum wells
grown along the �110� direction, exhibits the above symme-
try without tuning to a particular point in the spin-orbit cou-
pling space. At the symmetry point, the spin-relaxation time
becomes infinite giving rise to a persistent spin helix. The
energy bands in Eq. �1� at the �=� point have an important

shifting property: 	↓�k��=	↑�k� +Q� �, where Q+=4m� , Q−=0
for the H�ReD� model and Qx=4m� ,Qy =0 for the H�110�
model. The exact SU�2� symmetry discovered in Ref. 16 is
generated by the spin operators �written here in a trans-
formed basis as�,

SQ
− = �k�

ck�↓
† ck�+Q� ↑, SQ

+ = �k�
c

k�+Q� ,↑
†

ck�↓,

S0
z = �k�

ck�↑
† ck�↑ − ck�↓

† ck�↓, �2�

with ck↑,↓ being the annihilation operators of spin-up and
spin-down particles. These operators obey the commutation
relations for angular momentum, �S0

z ,SQ

�= 
2SQ


 and
�SQ

+ ,SQ
− �=S0

z . Early spin-grating experiments on GaAs exhibit
phenomena consistent with the existence of such a symmetry
point.17

In Ref. 16 the spin-charge transport equations for Hamil-
tonian �1� have been obtained in the diffusive limit in which
�kF��1. However the regions �kF��1 and �kF��1 are
also experimentally accessible, and no theory is yet available
to deal with these regimes. We now present the exact spin
and charge structure factors at the exact-symmetry point for
any value of the parameter �kF�.

We first obtain the spin and charge structure factors in the
absence of spin-orbit coupling but valid in both the �→0 and
in �→ regimes. One should think of the structure factor
obtained this way as a generalization of the classic Lienhard
formulas in the presence of disorder. We then use a non-
Abelian gauge transformation introduced in Ref. 16 to obtain
the structure factors for the spin-orbit coupling problem de-
scribed above.
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We start by formulating the problem in the language of
the Keyldish formalism.14,18,19 Assuming isotropic scattering
with momentum lifetime �, the retarded and advanced
Green’s functions are

GR,A�k,	� = �	 − H 

i

2�
�−1

. �3�

We introduce a momentum-dependent, energy-dependent,
and position-dependent charge-spin density which is a
2�2 matrix g�k ,r , t�. Summing over momentum,

��r,t� 	 
 d2k

�2��3�
g�k,r,t� , �4�

gives the real-space spin-charge density ��r , t�=n�r , t�
+Si�r , t��i, where n�r , t� and Si�r , t� are the charge and spin
densities and �=m /2� is the density of states in two dimen-
sions. ��r , t� and g�k ,r , t� satisfy the equation14,18

�g

�t
+

1

2
� �H

�ki
,
�g

�ri
� + i�H,g� = −

g

�
+

i

�
�GR� − �GA� , �5�

which we now solve for a free-electron gas Hamiltonian. To
obtain the spin-charge transport equations, we follow the
general sequence of technical manipulations: time-Fourier
transform the above equation, find a general solution for
g�k ,r , t� involving ��r , t� and the k-dependent spin-orbit cou-
pling, perform a gradient expansion of that solution �assum-
ing �r�kF, where kF is the Fermi wave vector� to second
order, and, finally, integrate over the momentum. The formal-
ism is valid even through the diffusive-ballistic boundary.
For the diffusive limit, when � is small, we need to keep only
the second-order term in the gradient expansion which gives
rise to the usual spin and charge propagators �i�−Dq2�−1. As
� increases, we need to keep higher-order terms in the gra-
dient expansion to accurately describe the transport physics.
The ballistic limit requires infinite summation over the gra-
dient expansion. This can be easiest seen in the regime of
zero-spin-orbit coupling, in which the sums can be exactly
performed. It is then fortuitous that our spin-orbit coupled
problem can be mapped into a free electron plus disorder
problem where we can obtain the structure factor exactly. By
Fourier transforming in time we obtain the following recur-
sive equation:

− i���r,t� = − i
 d�kdk

�2��2m
��

n=1



gn�k,r,t� , �6�

where �=�+ i /� and the nth order term reads as

gn�k,r,t� = �r1
¯ �rn

�−
ki1

m
�¯ �−

kin

m
�� i

�
�n

g0�k,r,t�� ,

�7�

where g0�k ,r , t� contains a term which fixes the momentum
at the Fermi surface,

g0�k,r,t� =
i

�

2�

�
��	F −

k2

2m
� . �8�

Since the initial Hamiltonian and the transport equations are
rotationally invariant, we can assume propagation only on
�100� and with the use of the identities,



0

2�

d��cos����n =

�1 + �− 1�n�����1 + n

2
�

��1 +
n

2
� , �9�

�
n=1

 �1 + �− 1�n�����1 + n

2
�

��1 +
n

2
�

1

2�
an =

1 − �1 − a2

�1 − a2
, �10�

we can integrate over the Fermi-surface angles to obtain the
structure factor pole,

S��,q� =
1

i� −
1

�
+

1

�

1

�1 −
vF

2q2

�� +
i

�
�2

. �11�

The correct interpretation of our structure factor requires
consistently picking a branch of the square-root function in
the denominator. We pick the branch cut along the positive x
axis. The pole in the structure factor represents the charac-
teristic frequencies of the system,

�1,2 = −
i

�

�q2vF

2 −
1

�2 , �12�

which in the diffusive and ballistic limits reduces to the well-
known expressions,

� →  ⇒ �1,2 � 
 vFq ,

� → 0 ⇒ � � − iDq2, �13�

where D=vF
2� /2. The presence of only one �exponentially

decaying� solution in the diffusive limit follows directly from
correctly treating the branch-cut singularity in our structure
factor. It can then be seen that the exponentially divergent
solution �� iDq2 is a false pole of Eq. �11�.

Although not of immediate interest to the present paper,
we also present the structure factor for a bulk Fermi gas in
the presence of disorder. With the density of states defined as

�=
�2m�3/2EF

1/2

4�2 the transport equation becomes

− i�� = − i
 
 
 d� sin �d�k2dk

�2��4��
��

n=1



gn, �14�

where gn and � are as before and �=�+ i /�. Rotational
invariance allows us to take ki=kz and we obtain
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− i�� =
mkF

�2��2��
�
n=0

 �vFq

�
�


−1

1

xndx

=
mkF

�2��2��

�

vFq
ln� 1 +

q

vF�

1 −
q

vF�
�� . �15�

Introducing the three-dimensional density of states at the
Fermi surface, as well as a �-function source term, the struc-
ture factor reads as

� =
1

i� +
�

2�vFq
ln� 1 +

q

vF�

1 −
q

vF�
�

. �16�

To see the diffusive pole we need to carefully expand the
logarithm,

� → 0:� =
1

i� −
vF

2�

3
q2

, �17�

which is the right diffusive pole in three dimensions. For the
ballistic pole we solve the equation �the one below is valid
for any ��

� = vFq
e−ivFq� + eivFq�

e−ivFq� − eivFq� −
i

�
. �18�

In the ballistic limit �→ the exponentials in the fraction are
oscillating wildly and must be regularized. Depending on the
regularization q→q+0
 the characteristic frequencies are

� = 
 vFq , �19�

which are the ballistic poles.
Having solved the free-Fermi gas case, we now add spin-

orbit coupling at the special SU�2� symmetric point of the
persistent spin helix. Following Ref. 16, we express the spin-
orbit coupling Hamiltonian �1� in the form of a background

non-Abelian gauge potential HReD=
k−

2

2m + 1
2m �k+−2m��z�2

+const, where the field strength vanishes identically for
�=�. Therefore, we can eliminate the vector potential
by a non-Abelian gauge transformation: �↑�x+ ,x−�
→exp�i2 max+��↑�x+ ,x−� and �↓�x+ ,x−�→exp
�−i2 max+��↓�x+ ,x−�. Under this transformation, the spin-
orbit coupled Hamiltonian is mapped to that of the free
Fermi gas, but while diagonal operators such as the charge n
and Sz remain unchanged, off-diagonal operators, such as
S−�x��=�↓

†�x���↑�x�� and S+�x��=�↑
†�x���↓�x��, are transformed:

S−�x��→exp�−iQ� ·r��S−�x�� and S+�x��→exp�iQ� ·r��S+�x��. Here

Q� is the shifting wave vector of the spin-orbit coupled
Hamiltonian. Since in the gauge transformed basis, all three
components of the spin and charge have the structure factor
derived above, in the original �experimentally measurable�
basis, the Sx and Sy have the following form:

S
��,q�� =
1

i� −
1

�
+

1

�

1

�1 −
vF

2�q� 
 Q� �2

�� +
i

�
�2

. �20�

The above result represents the exact form factor for a spin-
orbit-coupled system valid everywhere from the diffusive to
ballistic regimes. The persistent spin helix is clearly main-

tained for any values of � ,� ,v f since S�� ,Q� �=1 / i� which
renders the spin lifetime infinite.

The transient-grating experiments17,20 measure the � Fou-
rier transform of S�� ,q�, i.e., S�t ,q�= 1

2��dte−i�tS�� ,q�.
S�� ,q� is analytic in the upper half complex plane. Thus,
S�t ,q� is zero for t�0. For t�0, by selecting the integral
contour as shown in Fig. 1, we obtain its real and imaginary
parts as follows:

Im�S�t,q��
e−t/� =

a

1 + a2 + P

a

 2

�

�x2 − a2cos� xt

�
�

x�x2 − 1 − a2�
,

Re�S�t,q��
e−t/� = −

a2 + cos��1 + a2 t

�
�

1 + a2 , �21�

where a=vF�q� 
Q� �� and P indicates the principal value of
the integral.

In Fig. 2, we plot the real and imaginary parts of S�t ,q�
for different values of a. In the figure, we set �=1, and from
bottom to top, the curves are corresponding to a
=2.2,2.6,3 ,3.4,3.8,4.2. Although the real part is clearly an

oscillating function of t with an oscillation frequency,
�1+a2

� ,
the oscillation is not easily seen in the figure. However, the
imaginary part has a much larger oscillation amplitude than
the real part, and the oscillation becomes clear as a increases,
reflecting the ballistic nature of the sample. The oscillation
frequency in the imaginary part is linearly dependent on a as
shown in Fig. 3.

In this paper we have obtained the exact transport equa-
tions valid in the diffusive, ballistic, and crossover regimes

y

x

FIG. 1. �Color online� The sketch of the branch cut and the
integral contour in the calculation of S�t ,q�.
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of a special type of spin-orbit-coupled system which enjoys
an SU�2� gauge symmetry. We obtained the exact form of the
structure factors and found the dependence of the spin den-
sity as would be observed in a transient-grating experiment.
For the diffusive regime, our equations reproduce the spin-
charge dynamics of the persistent spin helix at the SU�2�
symmetry point. It would be interesting to work out the

transport equations in the diffusive-ballistic regime in pertur-
bation theory away from the persistent spin helix.
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FIG. 2. �a� The imaginary and �b� the real parts of S�t ,q�. We set
�=1. For both figures, from bottom to top, the curves are corre-
sponding to a=2.2,2.6,3 ,3.4,3.8,4.2.
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FIG. 3. �Color online� The oscillation frequency in the imagi-
nary part of S�t ,q� as a function of a.
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